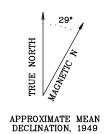

ALASKA DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS


GEOPHYSICAL REPORT 2004_3_3b

Section outlines from U.S. Geological Survey topographic bases: Healy A-1 (1949); Healy B-1 (1950); Quadrangles, Alaska

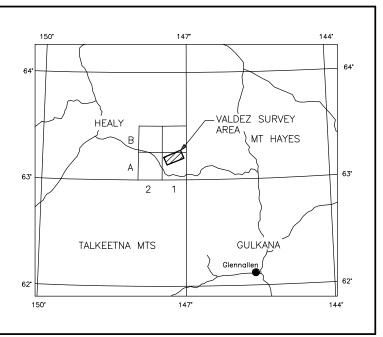
900 Hz COPLANAR APPARENT RESISTIVITY OF THE VALDEZ CREEK MINING AREA, CENTRAL ALASKA

PARTS OF HEALY QUADRANGLE

by
Laurel E. Burns, Fugro Airborne Surveys Corp., and Stevens Exploration Management Corp.
2004

DESCRIPTIVE NOTES

The geophysical data were acquired with a DIGHEM VElectromagnetic (EM) system, a Scintrex cesium CS2 magnetometer, and a Herz VLF system installed in an AS350B-1 Squirrel helicopter. In addition, the survey recorded data from a radar altimeter, GPS navigation system, 50/60 Hz monitors and video camera. Flights were performed at a mean terrain clearance of 200 feet along survey flight lines with a spacing of a quarter of a mile. Tie lines were flown perpendicular to the flight lines at intervals of approximately three miles.


A Sercel Real—Time Differential Global Positioning System (RT—DGPS) was used for both navigation and flight path recovery. The helicopter position was derived every 0.5 seconds using both real—time and post—processing differential positioning to a relative accuracy of better than 10 m. Flight path positions were projected onto the Clarke 1866 (UTM) spheroid, 1927 North American datum using a Central Meridian (CM) of 147°, a north constant of 0 and an east constant of 500,000. Positional accuracy of the presented data is better than 10 m with respect to the UTM grid.

RESISTIVITY

The DIGHEM EM system measured inphase and quadrature components at five frequencies. Two vertical coaxial coil—pairs operated at 900 and 5000 Hz while three horizontal coplanar coil—pairs operated at 900, 7200 and 56,000 Hz. EM data were sampled at 0.1 second intervals. The EM system responds to bedrock conductors, conductive overburden, and cultural sources. Apparent resistivity is generated from the inphase and quadrature component of the coplanar 900 Hz using the pseudo—layer half space model. The data were interpolated onto a regular 100 m grid using a modified Akima (1970) technique.

Akima, H.,1970, A new method of interpolation and smooth curve fitting based on local procedures: Journal of the Association of Computing Machinery, v. 17, no.4, p.589-602.

64'

LOCATION INDEX

RESISTIVITY CONTOURS

1000 —
800 —
600 —
500 ———
400 —
300 —
250 —
200 —
150 —
125
100 —
Contours in ohm—m at 10 intervals per decade
resistivity low

SURVEY HISTORY

The map has been compiled and drawn under contract between the State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys, and Stevens Exploration Management Corp. The map was produced by Fugro Airborne Surveys and supercedes the earlier full color version released by DGGS in 1994. Airborne geophysical data for the area were acquired and processed in 1993 under contract between DGGS and WGM, Mining and Geological Consultants, Inc. The subcontractor acquiring and processing the data was DIGHEM, a division of CGG Canada Ltd. Other products from this survey are available from DGGS, 3354 College Road, Fairbanks, Alaska, 99709—3707.